教育部考试中心函件《关于2017年普通高考考试大纲修订内容的通知》要求“增加中华优秀传统文化的考核内容,积极培育和践行社会主义核心价值观,充分发挥高考命题的育人功能和积极导向作用.比如,在数学中增加数学文化的内容.”因此,我们特别策划了此专题,将数学文化与数学知识相结合,选取典型样题深度解读,希望能够给予广大师生的复习备考以专业的帮助与指导.
一、算法问题
1.用更相减损术求294和84的最大公约数时,需要做减法的次数为( )
A.2 B.3
C.4 D.5
答案 C
解析 (84,294)→(84,210)→(84,126)→(84,42)→(42,42),一共做了4次减法.
2.如图所示的程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b分别为14,18,则输出的a为( )
A.4 B.2
C.0 D.14
答案 B
解析 由题意输出的a是18,14的最大公约数2,故选B.
3.用辗转相除法求459和357的最大公约数,需要做除法的次数是( )
A.1 B.2
C.3 D.4
答案 C
解析 ∵459÷357=1…102,
357÷102=3…51,
102÷51=2,
∴459和357的最大公约数是51,需要做除法的次数是3.
4.秦九韶算法是中国南宋时期的数学家秦九韶提出的一种多项式简化算法,对于求一个n次多项式函数fn(x)=anxn+an-1xn-1+…+a1x+a0的具体函数值,运用常规方法计算出结果最多需要n次加法和次乘法,而运用秦九韶算法由内而外逐层计算一次多项式的值的算法至多需要n次加法和n次乘法.对于计算机来说,做一次乘法运算所用的时间比做一次加法运算要长得多,所以此算法极大地缩短了CPU运算时间,因此即使在今天该算法仍具有重要意义.运用秦九韶算法计算f(x)=0.5x6+4x5-x4+3x3-5x当x=3时的值时,最先计算的是( )
A.-5×3=-15
B.0.5×3+4=5.5
C.3×33-5×3=66
D.0.5×36+4×35=1 336.6
答案 B
解析 f(x)=0.5x6+4x5-x4+3x3-5x=(((((0.5x+4)x-1)x+3)x+0)x-5)x,
然后由内向外计算,最先计算的是0.5×3+4=5.5.
5.若用秦九韶算法求多项式f(x)=4x5-x2+2当x=3时的值,则需要做乘法运算和加减法运算的次数分别为( )
A.4,2 B.5,3
C.5,2 D.6,2
答案 C
解析 ∵f(x)=((((4x)x)x-1)x)x+2,∴乘法要运算5次,加减法要运算2次.
6.已知函数f(x)=6x6+5,当x=x0时,用秦九韶算法求f(x0)的值,需要进行乘方、乘法、加法的次数分别为( )
A.21,6,2 B.7,1,2
C.0,1,2 D.0,6,1
答案 D
解析 ∵f(x)=6x6+5,
多项式的最高次项的次数是6,
∴要进行乘法运算的次数是6.
要进行加法运算的次数是1,
运算过程中不需要乘方运算.
7.中国古代有计算多项式值的秦九韶算法,下图是实现该算法的程序框图.执行该程序框图,若输入的a依次为2,2,5,x,n均为2,则输出的s等于( )
A.7 B.12
C.17 D.34
答案 C
解析 第一次运算,a=2,s=2,n=2,k=1,不满足k>n;
第二次运算,a=2,s=2×2+2=6,k=2,不满足k>n;
第三次运算,a=5,s=6×2+5=17,k=3,满足k>n,
输出s=17,故选C.
8.用秦九韶算法求多项式f(x)=x3-3x2+2x-11的值时,应把f(x)变形为( )
A.x3-(3x+2)x-11 B.(x-3)x2+(2x-11)
C.(x-1)(x-2)x-11 D.((x-3)x+2)x-11
答案 D
解析 f(x)=x3-3x2+2x-11=((x-3)x+2)x-11
9.用秦九韶算法求函数f(x)=3x5-2x4+2x3-4x2-7当x=2的值时,v3的结果是( )
A.4 B.10
C.16 D.33
答案 C
解析 函数f(x)=3x5-2x4+2x3-4x2-7=((((3x-2)x+2)x-4)x)x-7,
当x=2时,v0=3,v1=3×2-2=4,v2=4×2+2=10,v3=10×2-4=16.
10.用秦九韶算法求多项式f(x)=x6-5x5+6x4+x2+0.3x+2的值,当x=-2时,v1的值为( )
A.1 B.7
C.-7 D.-5
答案 C
解析 ∵f(x)=x6-5x5+6x4+x2+0.3x+2=(((((x-5)x+6)x+0)x+1)x+0.3)x+2,
∴v0=a6=1, v1=v0x+a5=1×(-2)-5=-7.
11.利用秦九韶算法求多项式f(x)=-6x4+5x3+2x+6的值,当x=3时,韶v3的值为( )
A.-486 B.-351
C.-115 D.-339
答案 C
解析 f(x)=-6x4+5x3+2x+6=(((-6x+5)x+0)x+2)x+6,
∴v0=a4=-6,
v1=v0x+a3=-6×3+5=-13,
v2=v1x+a2=-13×3+0=-39,
v3=v2x+a1=-39×3+2=-115.
12.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例.若输入n,x的值分别为4,3,则输出v的值为( )
A.20 B.61
C.183 D.548
答案 C
解析 由程序框图知,初始值:n=4,x=3,v=1,i=3,第一次循环:v=6,i=2;第二次循环:v=20,i=1;第三次循环:v=61,i=0;第四次循环:v=183,i=1.结束循环,输出当前v的值183.
13.原始社会时期,人们通过在绳子上打结来计算数量,即“结绳计数”,当时有位父亲,为了准确记录孩子的成长天数,在粗细不同的绳子上打结,由细到粗,满七进一,那么孩子已经出生多少天?( )
A.1 326 B.510 C.429 D.336
答案 B
解析 由题意满七进一,可得该图示为七进制数,
化为十进制数为1×73+3×72+2×7+6=510.
14.用秦九韶算法计算多项式f(x)=5x5+4x4+3x3+2x2+x+1,乘法运算次数为____________.加法运算次数为________.
答案 5 5
解析 ∵f(x)=((((5x+4)x+3)x+2)x+1)x+1,
∴乘法要运算5次,加法要运算5次
15.若f(x)=x4+3x3+x+1,用秦九韶算法计算f(π)时,需要乘法m次,加法n次,则m+n=________.
答案 6
解析 f(x)=x4+3x3+x+1=(((x+3)x)x+1)x+1,
用秦九韶算法计算f(π)时,乘法运算与加法运算的次数和等于6.
16.我国南北朝数学家何承天发明的“调日法”是程序化寻求精确分数来表示数值的算法,其理论依据是:设实数x的不足近似值和过剩近似值分别为和 (a,b,c,d∈N*),则是x的更为精确的不足近似值或过剩近似值.我们知道π=3.141 59…,若令<π<,则第一次用“调日法”后得是π的更为精确的过剩近似值,即<π<,若每次都取最简分数,那么第四次用“调日法”后可得π的近似分数为________.
发布评论