贝勃定律
有人做过一个实验:一个人右手举着300克重的砝码,这时在他的左手放上305克的砝码,他并不会觉得有多少差别。直到左手砝码的重量加至306克时,才会觉得有些重。如果右手举着600克砝码,这时左手上的重量要达到612克才能感觉到重了。也就是说,原来的砝码越重,后来就必须加更大的量才能感觉到差别。这种现象称为“贝勃定律”
“贝勃定律”在生活中到处可见。比如,5角钱一份的晚报突然涨了50元钱,你会觉的不可思议,无法接受。但是,如果原本500万元的房产也涨了50元钱,甚至500元钱,你都会觉得价钱根本没有变化。
精明的人会利用“贝勃定律”为自己减轻做事的阻力。
一些商家调整产品的价格时,他们会先小幅度上涨价格,在人们都接受了以后再大幅加价。
有经验的谈判专家,都会在谈判临近结束时才提出一些棘手的条件。二对方被一开始的优厚条件所诱惑,常常就不怎么在意之后才提出的那些条件了。

微软的面试题
全球最大规模的电脑软件公司微软在招聘员工的考试中常常会出一些看似简单,却很难回答的问题。下面是一道微软公司的面试题,你会给出怎样的答案?
为什么下水道的盖子是圆形的而不是正方形的?
应聘者的回答可说是五花八门。
有人诙谐地回答:下水道的洞口是圆形的,盖子当然也应该是圆的?
应聘者回答:因为圆形的洞比正方形的洞好挖。
还有人给出这样的答案:在进行短距离搬运时,圆形的盖子可以很方便地通过滚动的方法来搬运,而正方形的盖子就不容易搬运,你需要借助手推车或者由两个人抬着走。再有一点就是,用圆形盖子盖住洞口时,不需要怎么调整就可以与洞口严丝合缝。
主考官认为最好的回答是:正方形的盖子容易掉到洞里去。
想一想,如果盖子真的掉进下水道的话,那么。不是发生伤害施工人员的事故,就是盖子掉到水里,很难打捞。
为什么正方形的盖子容易掉下去呢?这是因为正方形的对角线比它的边长要长一些。如果把一个正方形的盖子垂直地立起来,稍微一转,它就会很容易掉到下水道里去。与此相反,圆的直径都是等长的,这使它很难掉到洞里去。
这个问题是微软最为有名的面试题。由于“曝光率”太高,微软在面试中已经停止使用这道题了。

聪明青年智当女婿
在一个古代的欧洲国家里,有一位非常漂亮的公主。国王在王宫前的广场上举行了隆重的选女婿仪式。前来参加竞争的是l00名已被精心挑选过的青年。一位大臣向大家宣布了规则:
竞选人以公主为首排成一个横列。在国王下达报数令后,由公主开始报数,每报数一次,所有的偶数退列。经过多次报数后,谁能够唯一地留在公主的身边,谁就是被选的女婿。
竞选来始了!那100名青年随着公主整整齐齐地排成一个横列。国王一声令下:“报数!”成千上万双眼睛都紧紧地注视着他们。一批竞选人落选了,又一批竞选人落选了......经过6次报数后,一个从小就喜爱数学的青年赢得了胜利,被选为女婿。
这位聪明的青年人获胜的秘诀在哪里呢?
要能够最后唯一地留在公主身边,关键在于第一次排队时所选的位置。确定这个位置并不难。一个办法是从1写到101,一次一次地将排列顺序中的偶数部分划去,即满江歌手
(1)1、2、3、4、5、••••••100、101;
(2)1、3、5、7、9、••••••99、101;
(3)1、5、9、13、17••••••97、101;
(4)1、9、17、25、33••••••89、97;
(5)1、17、33、49、65、81、97;
(6)1、33、65、97。
刘銮雄评价李嘉欣我们不难知道被选女婿第一次排队时的位置的应是65。
张涵予的老婆

列表也能解决问题
甲、乙、丙、丁、戊五位同学在一次数学竞赛中得了前五名。发奖前老师要他们猜一猜各人所得的名次。甲猜:乙第三名,丙第五名;乙猜:戊第四名,丁第五名;丙猜测:甲第一名,戊第四名;丁猜:丙第一名;戊猜:甲第三名,丁第四名。老师说:每个名次都有人猜对了。试问:获得第四名的是谁?
读完题目,你一定会感到头绪太多,无从下手。为了理出头绪,让我们把五位同学猜测的结果用表格列出
 
第一名
第二名
第三名
第四名
第五名
甲 猜
 
 
 
乙 猜
 
六一感谢老师的话简短暖心 
 
大小阿怡
丙 猜刘涛照片大全图片欣赏
 
 
 
丁 猜
 
 
 
戊 猜
 
 
 
这时,注意到老师所说的“每个名次都有人猜对。”我们从表格中意外的发现:只有丁猜的“乙是第二名”这个结果是唯一的,立即可知乙一定是第二名。乙是第二名,就不会是第三名,所以甲一定是第三名。从而,甲不是第一名,则丙一定是第一名。由此又推得,丙不是第五名,丁是第五名。因为丁不可能是第四名,故第四名只能是戊。
当然,列出表格以后,根据老师所说的话,也可以从第四名是戊或丁入手。经分析,如果丁是第四名,则将引出矛盾,从而确定只能是戊获得第四名。
由此可知,有些问题,各种量之间关系复杂,并列出现的情况多,常会使你觉得难以入手。解题时,如果我们能选用合适的方法(包括画图、列表等),把有关的数据(或相互之间的关系)整理出来,则量与量之间的关系立刻跃然纸上,问题也就迎刃而解了。
一瓶香瓶酒
今天是妈妈的生日。小明从山上为妈妈采来一束鲜花,爸爸从城里买回一瓶香槟酒。
妈妈非常高兴地收下了小明为她献上的鲜花,但是却认为爸爸花钱买香槟酒太浪费了。于是,妈妈给爸爸出了一个难题,妈妈对爸爸说:
“你要是能在不把木塞拔出来,也不把木塞和瓶子弄坏的情况下把酒倒出来,我才喝你买的这瓶香槟酒。”
爸爸一听可为了难,不把木塞拔出来,怎么可能把酒倒出来呢?看着桌上的酒瓶,爸爸一点办法也想不出来。
这时,小明在爸爸耳边悄悄说了一句话。爸爸一听不由笑着喊道“真是好主意!”说完,立即采取行动。
不一会儿,妈妈怀子里斟满了香气四溢的香槟酒,妈妈非常高兴地举起了酒杯。
那么,小明想出了什么好办法呢?
原来,小明是这么想的:
通过把木塞拔出来、在木塞上打个孔、把木塞弄碎或者把酒瓶的嘴儿敲掉都可以把酒从瓶里倒出来。
而以上四种方法都只是为了达到把相互隔绝的瓶内、瓶外这两个空间“接通”的目的。
妈妈提出的条件只是不让采取上面的四种办法,但并不是不让“接通”两个空间。
因此,只需再到一种可以“接通”的办法就行了。
办法很简单:
既然界于两个空间之间的木墓被拔到“瓶外空间”可以使两个空间“接通”,那么,沿着相反的方向,把木塞捅到“瓶内空间”不是也可以同样起到“打开一条通道”的目的吗! 
──问题的解决就这么简单,小明让爸爸把木塞捅到瓶里去!

诺贝尔为什么没有设数学奖
诺贝尔奖在全世界有很高的地位,许多科学家梦想着能获得诺贝尔奖。数学被誉为“科学女皇的骑士”,却得不到每年由瑞典科学院颁发的诺贝尔奖,过去没有,将来也不会得到。因为瑞典著名化学家诺贝尔留下的遗嘱中,没有提出设立数学奖。