2019-2020学年山东省青岛市平度市国开中学七年级第二学期期中数学试卷
一、选择题(共8小题).
1.(3分)下列运算中,正确的是( )
A.a2+a3=a5 B.a6÷a3=a2 C.(a4)2=a6 D.a2•a3=a5
2.(3分)下列四个图形中,∠1和∠2是同位角的是( )
A. B.
C. D.
3.(3分)下列各式中,不能应用平方差公式进行计算的是( )
A.(﹣x+2y)(2y+x) B.(x+y)(x﹣y)
C.(a﹣b)(﹣a+b) D.(﹣2m+n)(﹣2m﹣n)
4.(3分)已知一个等腰三角形的两边长分别是2和5,那么这个等腰三角形的周长为( )
A.9 B.12 C.9或12 D.7
5.(3分)如图,下列推理不正确的是( )
A.∵AB∥CD,∴∠ABC+∠C=180° B.∵∠1=∠2,∴AD∥BC
C.∵AD∥BC,∴∠3=∠4 D.∵∠A+∠ADC=180°,∴AB∥CD
6.(3分)如图,表示某港口某日从6时到18时水深变化情况,每一艘轮船在水深不低于6
米时可安全通航,满足这一要求的时间段是( )
A.12小时以后 B.14小时以后 C.10时到14时 D.12时到16时
7.(3分)下列说法正确的有( )
④同位角相等;⑤过直线外一点做这条直线的垂线段,则这条垂线段叫做这个点到这条直线的距离.
A.1个 B.2个 C.3个 D.4个
8.(3分)我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图(1)可以用来解释(a+b)2﹣(a﹣b)2=4ab.那么通过图(2)面积的计算,验证了一个恒等式,此等式是( )
A.a2﹣b2=(a+b)(a﹣b) B.(a﹣b)2=a2﹣2ab+b2
C.(a+b)2=a2+2ab+b2 D.(a﹣b)(a+2b)=a2+ab﹣b2
二.填空题(本题满分24分,共8小题,每小题3分)
9.(3分)生物具有遗传多样性,遗传信息大多储存在DNA分子上,一个DNA分子的直径约为0.0000002cm.这个数量用科学记数法可表示为 cm.
10.(3分)计算32013×()2015的结果是 .
11.(3分)填空:x2﹣10x+ =( )2.
12.(3分)如图,直角三角形ABC中,AC⊥BC,CD⊥AB,点A到直线BC的距离等于线段 的长度,点A到直线CD的距离等于线段 的长度.
13.(3分)BD是△ABC的中线,AB=5,BC=3,△ABD和△BCD的周长的差是 .
14.(3分)声音在空气中的传播速度v(m/s)与温度t(℃)的关系如表:
温度(℃) | 0 | 5 | 10 | 15 | 20 |
速度v(m/s) | 331 | 336 | 341 | 346 | 351 |
则速度v与温度t之间的关系式为 ;当t=30℃时,声音的传播速度为 m/s.
15.(3分)某人从A点出发向北偏东60°方向前进到达B点,再从B点出发向南偏西15°方向前进到达C点,则∠ABC= °.
16.(3分)观察下列各式:
13+23=9=×4×9=×22×32
13+23+33=36=×9×16=×32×42
13+23+33+43=100=×16×25=×42×52
若n为正整数,试猜想13+23+33+…+n3等于 .(注:最终结果保留带括号的形式即可)
三.作图题(本题满分4分)
七年级数学下册期中试卷17.(4分)用圆规、直尺作图,不写作法,但保留作图痕迹.
一木匠师傅打算在长方形木板上截一个平行四边形使它的一组对边在长方形木板的边缘上,另一组对边中的一条边为AB,另一边过点C,且与AB平行,请帮忙确定这条边.
四.解答题
18.(16分)计算:
(1)﹣20+4﹣1×(﹣1)2008×()﹣2;
(2)(2x+1)(2x﹣1)﹣(2x+1)2;
(3)(a+3b﹣2c)(a﹣3b﹣2c);
(4)103×97(运用公式简算).
19.(6分)先化简,后求值:
(2x﹣3)2﹣(x+2y)(x﹣2y)﹣4y2,其中x=1,y=3.
20.(5分)已知:如图AB⊥BC于B,CD⊥BC于C,∠1=∠2.求证:BE∥CF.
证明:∵AB⊥BC,CD⊥BC(已知)
∴∠ABC=90°,∠BCD=90°( )
即∠1+∠3=90°,∠2+∠4=90°
又∵∠1=∠2( )
∴ = ( )
∴BE∥CF( )
21.(6分)周老师为锻炼身体一直坚持步行上下班.已知学校到李老师家总路程为2000
米.一天,周老师下班后,以45米/分的速度从学校往家走,走到离学校900米时,正好遇到一个朋友,停下又聊了半小时,之后以110米/分的速度走回了家.周老师回家过程中,离家的路程S(米)与所用时间t(分)之间的关系如图所示.
(1)求a的值.
(2)b= ;c= .
(3)求周老师从学校到家的平均速度.
22.(8分)如图,在锐角三角形ABC中,CD、BE分别是AB、AC边上的高,且CD、BE交于一点P,若∠A=50°,求∠BPC的度数.
23.(8分)如图,CF⊥AB于F,ED⊥AB于D,∠1=∠2,求证:FG∥BC.
24.(9分)把几个图形拼成一个新的图形,再通过两种不同的方法计算同一个图形的面积,可以得到一个等式,也可以求出一些不规则图形的面积.
例如,由1,可得等式:(a+2b)(a+b)=a2+3ab+2b2
(1)如图2,将几个面积不等的小正方形与小长方形拼成一个边长为a+b+c的正方形,试用不同的形式表示这个大正方形的面积,你能发现什么结论?请用等式表示出来.
(2)利用(1)中所得到的结论,解决下面的问题:
已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值.
(3)如图3,将两个边长分别为a和b的正方形拼在一起,B,C,G三点在同一直线上,连接BD和BF.若这两个正方形的边长满足a+b=10,ab=20,请求出阴影部分的面积.
发布评论