1.量子力学
量子概念是1900年普朗克首先提出的,到今天已经一百多年了。经过玻尔、德布罗意、玻恩、海森柏、薛定谔、狄拉克、爱因斯坦等许多物理大师的创新努力,到20世纪30年代,初步建立了一套完整的量子力学理论。量子物理是描述微小世界——即原子和亚原子领域的物理学,它不同于描述我们所熟悉的日常世界的“经典物理”学。经典物理与我们的常识是一致的,而这些常识又是基于我们的感觉的。量子物理则不同,它违背常识。
尽管量子力学是为描述远离我们的日常生活经验的抽象原子世界而创立的,但它对日常生活的影响无比巨大。没有量子力学作为工具,就不可能有化学、生物、医学以及其他每一个关键学科的引人入胜的进展。没有量子力学就没有全球经济可言,因为作为量子力学的产物的电子学革命将我们带入了计算机时代。同时,光子学的革命也将我们带入信息时代。量子物理的杰作改变了我们的世界,科学革命为这个世界带来了的福音,也带来了潜在的威胁。
2.太阳能
太阳能(Solar Energy),一般是指太阳光的辐射能量,是一种清洁的可再生能源,在现代一般用作发电。自地球形成生物就主要以太阳提供的热和光生存,而自古人类也懂得以阳光晒干物件,并作为保存食物的方法,如制盐和晒咸鱼等。但在化石燃料减少下,才有意把太阳能进一步发展。太阳能的利用有被动式利用(光热转换)和光电转换两种方式。太阳能发电一种新兴的可再生能源。广义上的太阳能是地球上许多能量的来源,如风能,化学能,水的势能等等。
3.太阳能电池的工作原理
太阳光照在半导体p-n结上,形成新的空穴-电子对,在p-n结电场的作用下,光生空穴由n区流向p区,光生电子由p区流向n区,接通电路后就形成电流。这就是光电效应太阳能电池的工作原理。太阳能发电有两种方式,一种是光—热—电转换方式,另一种是光—电直接转换方式。
3.1光—热—电转换
光—热—电转换方式通过利用太阳辐射产生的热能发电,一般是由太阳能集热器将所吸收的热能转换成工质的蒸气,再驱动汽轮机发电。前一个过程是光—热转换过程;后一个过程是热—电转换过程,与普通的火力发电一样.太阳能热发电的缺点是效率很低而成本很高,估计它的投资至少要比普通火电站贵5~10倍.一座1000MW的太阳能热电站需要投资20~25亿美元,平均1kW生活中的物理的投资为2000~2500美元。因此,目前只能小规模地应用于特殊的场合,而大规模利用在经济上很不合算,还不能与普通的火电站或核电站相竞争。
3.2光—电直接转换
光—电直接转换方式该方式是利用光电效应,将太阳辐射能直接转换成电能,光—电转换的基本装置就是太阳能电池。太阳能电池是一种由于光生伏特效应而将太阳光能直接转化为电能的器件,是一个半导体光电二极管,当太阳光照到光电二极管上时,光电二极管就会把太阳的光能变成电能,产生电流。当许多个电池串联或并联起来就可以成为有比较大的输出功率的太阳能电池方阵了。太阳能电池是一种大有前途的新型电源,具有永久性、清洁性和灵活性三大优点.太阳能电池寿命长,只要太阳存在,太阳能电池就可以一次投资而长期使用;与火力发电、核能发电相比,太阳能电池不会引起环境污染;太阳能电池可以大中小并举,大到百万千瓦的中型电站,小到只供一户用的太阳能电池组,这是其它电源无法比拟的。
4.影响太阳能电池转换效率的主要原因与改善方法
4.1材料
4.1.1厚度
半导体芯片受光过程中,带正电的电洞往p 型区移动,带负电的电子往N型区移动;受光后,
电池若接有负载,则负电子由N区负电极流出负电再由P 区正电极流入形成一太阳能电池。(图一)
图一(受光后的太阳能电池)
依据此原理我们可以知道,太阳能电池愈薄,电子、电洞的移动路径愈短。
4.2制程
4.2.1电池与接线的电阻
电池与接线间的电阻对太阳能电池转换效率的高低影响十分显著。尤其太阳能电池模块是由多个电池串联而成,因此接点电阻影响甚大。因此,可在采用模块设计时改进横向布线及电池极板等布线结构,以降低电阻。并透过缩小电池单元间隔、加大电池单元的排列密度,提高模块的转换效率。此外,也可将金属电极埋入基板中,以减少串联电阻。
4.2.2串叠型电池
将太阳电池制成串叠型电池。把两个或两个以上的元件堆栈起来,能够吸收较高能量光谱的电池放在上层,吸收较低能量光谱的电池放在下层,透过不同材料的电池将光子的能量层层吸收,减少光能的浪费并获得比原来更多的光能。
4.3表面处理(影响可用之阳光量)
4.3.1抗反射层
在太阳能电池的表面,会镀上一层抗反射层,主要的作用在于让太阳能吸收的过程当中,仅少量的反射造成光能流失。抗反射层做得越好,所能运用的光能自然更多,这也是太阳能电池的制造关键。
抗反射膜的意思就是在基板上镀上一层比基板低折射率的材质,太阳能电池所采用的抗反射膜材质不尽相同,如果能发展出最适合的材质,在太阳能电池转换效率的提升上必是一大进步。
4.3.2表面粗化处理
将表面制成金字塔型的组织结构,可增加表面积,吸收更多太阳光。
4.4太阳光版角度
4.4.1固定式太阳能光电版
不当的装设太阳能光电板会让光电板的日照效益事倍功半,由于所处纬度的不同,太阳照射角度不同,因此太阳能光电板的架设角度也会影响到光电板吸收阳光的效益。
若是处于赤道上,光电板须平放在水平面上的日照效益最高,而台湾位于北回归线上,纬度为北纬23.5 度。加上白天太阳由东方升起后,行进的轨道会在台湾的南方,所以架设太阳能光电板将板面朝南并将仰角设定为23.5 度,将可以得到最大的日照效益。
另外要注意的是,在架设太阳光电板的场地周围,须避免建筑物、植物或其他可能会遮蔽太阳光照射太阳能光电板的遮蔽物,以利太阳能光电板可以完全接收太阳光达到最大的发电效益。
4.4.2转动式太阳能光电版
太阳日出日落,太阳能光电板在一天中每个时段所能接收的最大太阳光因而不同,无法保持在最大值,因此有人设计出随着太阳的方向、角度而转动的太阳能光电版,比固定式太阳能光电板更能接收最多的太阳光,达到最大的发电效益。
5.太阳能电池发展前景
目前,太阳能电池的应用已从军事领域、航天领域进入工业、商业、农业、 通信、家用电器以及公用设施等部门,尤其可以分散地在边远地区、高山、沙漠、海岛和农村使用,以节省造价很贵的输电线路。但是在目前阶段,它的成本还很高,发出1kW电需要投资上万美元,因此大规模使用仍然受到经济上的限制。 但是,从长远来看,随着太阳能电池制造技术的改进以及新的光—电转换装置的发明,各国对环境的保护和对再生清洁能源的巨大需求,太
阳能电池仍将是利用太阳辐射能比较切实可行的方法,可为人类未来利用太阳能开辟广阔的前景。
发布评论