2022河北高考数学考试说明书
河北省根据教育部考试中心《xx年普通高等学校招生全国统一考试大纲(理科课程标准试验版)》(以下简称《大纲》),结合基础教育的实际情况,制定了《xx年普通高等学校招生全国统一考试大纲的说明(理科课程标准实验版)》(以下简称《说明》)的数学科部分。
制定《说明》既要有利于数学新课程的改革,又要发挥数学作为基础学科的作用;既要重视考查考生对中学数学知识的掌握程度,又要注意考查考生进入高等学校继续学习的潜能;既要符合《普通高中数学课程标准(实验)》和《普通高中课程方案(实验)》的要求,符合教育部考试中心《大纲》的要求,符合本省(自治区、直辖市)普通高等学校招生全国统一考试工作指导方案和普通高中课程改革试验的实际情况,又要利用高考命题的导向功能,推动新课程的课堂教学改革。
一、命题指导思想
河北高考时间表安排20221、普通高等学校招生全国统一考试,是由合格的高中毕业生和具有同等学力的考生参加的选拔性考试。
2、命题注重考查考生的数学基础知识、基本技能和数学思想方法,考查考生对数学本质的理解水平,体现课程标准对知识与技能、过程与方法、情感态度与价值观等目标要求。
3、命题注重试题的创新性、多样性和选择性,具有一定的探究性和开放性。既要考查考生的共同基础,又要满足不同考生的选择需求。合理分配必考和选考内容的比例,对选考内容的命题应做到各选考专题的试题分值相等,力求难度均衡。
4、试卷应具有较高的信度、效度,必要的区分度和适当的难度。
二、考试形式与试卷结构
1、考试形式
考试采用闭卷、笔试形式。全卷满分为150分,考试时间为120分钟。
2、试卷结构
全卷分为第Ⅰ卷和第Ⅱ卷两部分。
第Ⅰ卷为12个选择题,全部为必考内容。第Ⅱ卷为非选择题,分为必考和选考两部分。必考部分题由4个填空题和5个解答题组成;选考部分由选修系列4的几何证明选讲、坐标系与参数方程、不等式选讲各命制1个解答题,考生从3题中任选1题作答,若多做,则按所做的第一题给分。
3、试题类型
试题分为选择题、填空题和解答题三种题型。选择题是四选一型的单项选择题;填空题只要求直接填写结果,不必写出计算或推证过程;解答题包括计算题、证明题,解答题要写出文字说明、演算步骤或推证过程。三种题型分数的百分比约为:选择题40%左右,填空题10%左右,解答题50%左右。
4、难度控制
试题按其难度分为容易题、中等难度题和难题。难度在0。7以上的试题为容易题,难度为0。40。7的试题是中等难度题,难度在0.4以下的试题界定为难题。三种难度的试题应控制合适的分值比例,试卷总体难度适中。
三、考核目标与要求
1、知识要求
知识是指《普通高中数学课程标准(实验)》所规定的必修课程、选修课程系列2和系列4中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算,处理数据、绘制图表等基本技能。
对知识的要求由低到高分为三个层次,依次是知道(了解、模仿)、理解(独立操作)、掌握(运用、迁移),且高一级的层次要求包括低一级的层次要求。
2、能力要求
能力是指空间想像能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识。
3、个性品质要求
个性品质是指考生个体的情感、态度和价值观。要求考生具有一定的数学视野,认识数学的
科学价值和人文价值,崇尚数学的理性精神,形成审慎的思维习惯,体会数学的美学意义。
要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神。
4、考查要求
数学学科的系统性和严密性决定了数学知识之间深刻的内在联系,包括各部分知识的纵向联系和横向联系,要善于从本质上抓住这些联系,进而通过分类、梳理、综合,构建数学试卷的框架结构。对数学基础知识的考查,既要全面又要突出重点,对于支撑学科知识体系的重点内容,要占有较大的比例,构成数学试卷的主体,注重学科的内在联系和知识的综合性,不刻意追求知识的覆盖面。从学科的整体高度和思维价值的高度考虑问题,在知识网络交汇点设计试题,使对数学基础知识的考查达到必要的深度。
数学思想和方法是数学知识在更高层次上的抽象和概括,蕴涵在数学知识发生、发展和应用的过程中,能够迁移并广泛用于相关学科和社会生活。因此,对数学思想和方法的考查必然要与数学知识的考查结合进行,通过对数学知识的考查,反映考生对数学思想和方法理解和
掌握的程度。考查时要从学科整体意义和思想价值立意,要有明确的目的,加强针对性,注重通性通法,淡化特殊技巧,有效地检测考生对中学数学知识中所蕴涵的数学思想和方法的掌握程度。
数学是一门思维的科学,是培养理性思维的重要载体,通过空间想象、直觉猜想、归纳抽象、符号表达、运算推理、演绎证明和模式构建等诸方面,对客观事物中的数量关系和数学模式作出思考和判断,形成和发展理性思维,构成数学能力的主题。对能力的考查,强调以能力立意,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料。对知识的考查侧重于理解和应用,尤其是综合和灵活的应用,以此来检测考生将知识迁移到不同情境中去的能力,从而检测出考生个体理性思维的广度和深度以及进一步学习的潜能。