【初中数学】中考数学知识分值比重分析,附各年级重难点,再不收藏就晚了!
01
构建完整的知识框架
1.构建完整的知识框架是我们解决问题的基础,想要学好数学必须重视基础概念,必须加深对知识点的理解,然后会运用知识点解决问题,遇到问题自己学会反思及多维度的思考,最后形成自己的思路和方法。但有很多初中学生不重视书本的概念,对某些概念一知半解,对知识点没有吃透,知识体系不完整,就会出现成绩飘忽不定的现象。
2.正确理解和掌握数学的一些基本概念、法则、公式、定理,把握他们之间的内在联系。由于数学是一门知识的连贯性和逻辑性都很强的学科,正确掌握学过的每一个概念、法则、公式、定理可以为以后的学习打下良好的基础,如果在学习某一内容或解某一题时碰到了困难,那么很有可能就是因为与其有关的、以前的一些基本知识没有掌握好所造成的,因此要经常查缺补漏,到问题并及时解决之,努力做到发现一个问题及时解决一个问题。只有基础扎实,解决问题才能得心应手,成绩才会提高。
02
中考数学重难点分析
1.函数(一次函数、反比例函数、二次函数)中考占总分的15%左右。
特别是二次函数是中考的重点,也是中考的难点,在填空、选择、解答题中均会出现,且知识点多,题型多变。
如果在这一环节掌握不好,将会直接影响代数的基础,会对中考的分数会造成很大的影响。2.整式、分式、二次根式的化简运算整式的运算、因式分解、二次根式、科学计数法及分式化简等都是初中学习的重点,它贯穿于整个初中数学的知识,是我们进行数学运算的基础,其中因式分解及理解因式分解和整式乘法运算的关系、分式的运算是难点。
中考一般以选择、填空形式出现,但却是解答题完整解答的基础。运算能力的熟练程度和答
题的正确率有直接的关系,掌握不好,答题正确率就不会很高,进而后面的的方程、不等式、函数也无法学好。3.应用题,中考中占总分的30%左右包括方程(组)应用,一元一次不等式(组)应用,函数应用,解三角形应用,概率与统计应用几种题型。
一般会出现二至三道解答题(30分左右)及2—3道选择、填空题(10分—15分),占中考总分的30%左右。
现在中考对数学实际应用的考察会越来越多,数学与生活联系越来越紧密,应用题要求学生的理解辨别能力很强,能从问题中读出必要的数学信息,并从数学的角度寻求解决问题的策略和方法。方程思想、函数思想、数形结合思想也是中学阶段一种很重要的数学思想、是解决很多问题的工具。
4.三角形(全等、相似、角平分线、中垂线、高线、解直角三角形)、四边形(平行四边形、矩形、菱形、正方形),中考中占总分25%左右。
三角形是初中几何图形中内容最多的一块知识,也是学好平面几何的必要基础,贯穿初二到到初三的几何知识,其中的几何证明题及线段长度和角度的计算对很多学生是难点。
只有学好了三角形,后面的四边形乃至圆的证明就容易理解掌握了,反之,后面的一切几何证明更将无从下手,没有清晰的思路。
其中解三角形在初三下册学习,是以直角三角形为基础的,在中考中会以船的触礁、楼高、影子问题出现一道大题。因此在初中数学学习中也是一个重点。
四边形在初二进行学习的,其中特殊四边形的性质及判定定理很多,容易混淆,深刻理解这些性质和判定、理清它们之间的联系是解决证明和计算的基础,四边形中题型多变,计算、证明都有一定难度。经常在中考选择题、填空题及解答题的压轴题(最后一题)中出现,对学生综合运用知识的能力要求较高。
5.圆,中考中占总分的10%左右
包括圆的基本性质,点、直线与圆位置关系,圆心角与圆周角,切线的性质和判定,扇形弧长及面积,这章节知识是在初三学习的。
其中切线的性质和判定、圆中的基本性质的理解和运用、直线与圆的位置关系、圆中的一些线段长度及角度的计算是重点也是难点。
03
各年级教材知识重难点分析
七年级教材重难点分析
七上 | 教学内容 | 重点 | 难点 | 易错点 |
一 | 有理数 | 有理数的分类;数轴、相反数、绝对值及有理数的运算。 | 关于绝对值的化简;有理数的混合运算;符号情况;规律探索题 | 绝对值的化简;运算时符号的错误;规律探索无从下手 |
二 | 整式的加减 | 单项式、多项式、整式的概念;合并同类项; | 求代数式的值;整式的加减运算、求值;规律探索 | 单项式及多项式中的很多概念性的错误;合并时符号错误 |
三 | 一元一次方程 | 等式的基本性质及一元一次方程的解法;实际应用 | 关于一元一次方程的应用题。 | 去分母、去括号过程中容易出错 |
四 | 几何图形初步 | 线段、直线、射线的认识;线段、角的度量与比较;余角、补角 | 线段、直线、射线的区别;角度的大小比较运算;时钟问题 | 线段、直线、射线的认识; |
七下 | 教学内容 | 重点 | 难点 | 易错点 |
五 | 相交线与平行线 | 理解“三线八角”;平行线的性质和判定; | 准确理解判断两条直线平行的条件和特征;理解性质和判定的关系 | 不能正确的理解性质和条件的关系 |
六 | 实数 | 平方根、立方根的概念、实数的定义;区分有理数和无理数 | 理解无理数是无限不循环小数;实数运算的某些技巧掌握 | 无理数的表现形式;理解平方根有两个 |
七 | 平面直角坐标系 | 平面直角坐标系的概念;点的坐标表示;点的坐标变换 | 点的坐标变换(平移、对称) | 坐标的表示;坐标变换 |
八 | 二元一次方程组 | 用代入法,加减法解二元一次方程组 | 二元一次方程组的应用题;二元一次方程组和一次函数图像的关系 | 二元一次方程组的解法及应用题 |
九 | 不等式与不等式组 | 不等式的基本性质;一元一次不等式(组)的解及解法法 | 解一元一次不等式组取解集;一元一次不等式(组)处理应用问题;求字母取值范围的问题 | 一元一次不等式组解集的确定;解集端点值的包含问题 |
十 | 数据的收集、整理和描述 | 了解随机抽样、个体、总体、样本、样本容量、频率、频数等概念 | 理解频数、频率的概念, | 样本、样本容量的区分;全面调查和抽样调查的区分 |
八年级教材重难点分析
八上 | 教学内容 | 重点 | 难点 | 易错点 |
十一 | 三角形 | 三角形的边、角的关系;三角形的“三线”;重心的概念及性质 | 三角形三边的关系;三角形的的“三线” | 三角形的三线的区分;多边形的外角 | 如何查中考分数
十二 | 全等三角形 | 三角形全等的判定与探索;利用三角形全等解决实际问题。 | 灵活运用三角形全等的各种方法证明三角形全等;利用全等三角形的性质证明边、角相等 | 准确把握三角形全等的条件,以避免条件不完全的判定、及错判,如错用边边角 |
十三 | 轴对称 | 轴对称的概念和性质;中垂线的性质运用;等腰三角形的的性质和判定 | 中垂线性质的运用;等腰三角形的性质的运用;利用轴对称解决最短路径问题 | 对称轴是一条直线而非线段;最短路径问题 |
十四 | 整式的乘除与因式分解 | 幂的运算法则;乘法公式;因式分解的方法 | 乘法公式的综合考察;准确理解因式分解和整式乘法运算的关系 | 完全平方公式的运用;因式分解不彻底 |
十五 | 分式 | 分式的意义及用分式的基本性质解题;分式的化简运算;分式方程的解法和应用 | 如何确定最简公分母;分式方程的一般解法;利用分式方程解决应用题 | 解分式方程时必须检验;通分与解方程时去分母的区别 |
八下 | 教学内容 | 重点 | 难点 | 易错点 |
十六 | 二次根式 | 二次根式的性质;二次根式的化简运算;二次根式的几何应用 | 最简二次根式的理解;二次根式的化简及运算技巧; | 二次根式的化简时没有到最简;运算结果没有写最简 |
十七 | 勾股定理 | 勾股定理的概念及应用;勾股定理及其逆定理的关系; | 理解定理和逆定理的概念;勾股定理的应用,如最短路径问题 | 没理清勾股定理及其逆定理的关系 |
十八 | 平行四边形 | 平行四边形及特殊的平行四边形的性质和判定;正确理解他们的关系;三角形中位线定理 | 平行四边形及特殊的平行四边形的性质和判定的综合运用;证明和线段、角度的计算; | 平行四边形的判定;特别平行四边形的判定。 |
十九 | 一次函数 | 一次函数解析式及其图象;一次函数的概念和性质;待定系数法。 | 对函数的理解;一次函数图像的运用;数形结合思想的考察 | 一次函数图像与方程、方程组、不等式的关系; |
二十 | 数据的分析 | 理解频平均数、中位数、众数的概念;方差、标准差的计算 | 理解频平均数、中位数、众数的概念;方差、标准差的计算。 | 方差、标准差的计算。 |
九年级教材重难点分析
发布评论