纳米技术在现实生活中的应用
纳米技术在化学中的应用
纳米(nm),又被称做毫微米,是一个长度的度量单位,常常被用在衡量微观物质。在纳米级之下,许多物质会显现出不同的性质,比如通常状态下的铜是电的良导体,但是在某纳米尺寸下铜将失去导电性,又比如纯净的铁是银白的,而纳米级的铁是黑的。因此,人类根据不同物质纳米尺寸下表现出的不同性质进行深入研究,使纳米科技变成一项造福于人类的技术。
标签:纳米技术;化学;化学工业
1 纳米技术概况
纳米,又称毫微米,是度量长度的单位,1米(m)=109纳米(nm),从换算关系中可见这是一个极小的单位,如果再形象一些,人类头发的平均直径是0.05毫米,把头发丝沿轴向平均剖成五万份,其中的一份即是1纳米,所以一般来说纳米是用来标注微观物质的大小的度量单位。
在宏观上铜是导电的,把铜研磨成粉末(微米级)后其依然具有导电的特性,但是一旦将铜粉
末颗粒的直径研磨至纳米级之后,铜就不再导电了。与此相反的是,通常情况下二氧化硅是一种半导体具有单向导电性,如果将二氧化硅研磨成颗粒,并使颗粒的尺寸达到纳米级,那么其性质将会发生颠覆性改变——二氧化硅变得完全导电了。再比如,银这种物质在平常会释放出银离子,而银离子具有良好的杀菌作用,而将银做成纳米级的使其成为纳米银,其杀菌作用会大大提高。
由上可知,在纳米尺寸下,物质的许多性质将会发生改变,这种改变可能是与原来的性质相反或者是加强了原有的性质,甚至有些物质会体现出全新的性质,所以人们以此为基础发展了纳米技术。
纳米带动和发展了诸多学科,比如纳米化学、纳米医学、纳米电子学、纳米生物学和纳米材料学,而我们最常听到的既是纳米技术在化学和材料学中的应用,由于纳米技术研究的尺寸介于1到100纳米之间,所以通常认为,如果物体为固态粉末或者呈纤维状,当其有一维且小于100nm时,即为纳米尺寸;如果物体为球状,而且其比表面积大于60m2/g且其直径小于100nm时即达到纳米尺寸。在日常生活中很多材料的微观尺寸即以纳米表示,比如半导体材料的制程即为纳米级,截至2016年4月,最新的中央处理器(cpu)的制程为14nm。纳米材
料有如下几大特点:(1)颗粒尺寸小。(2)比表面积大。(3)表面能高。(4)表面原子所占比例大等特点。纳米材料还有其独有的三大效应:(1)表面效应。(2)小尺寸效应。(3)宏观量子隧道效应。
2 举例说明纳米技术在化学中的应用
上文已经说明,一些物质在纳米尺寸之下会体现出诸多不同于处于宏观尺寸下的性质,所以纳米技术广泛应用于化学中。
2.1 纳米银
普通状态下的银是银白的,而在纳米状态下的银则呈白粉末状,所以纳米银也被称作纳米银粉。通常状态下的银有良好的杀菌功能,而与通常状态的银不同纳米银的杀菌能力更强,而且其杀菌的效果随着颗粒尺寸的减小而加强,但是长期使用含纳米银的杀菌剂会在生物体内产生积累造成生物的中毒,并且银作为一种广谱的杀菌剂会将自然界中的有益菌一并杀灭破坏生态平衡。在化学工业上,纳米银还是乙烯氧化反应的良好的催化剂
纳米银也因为容易制得和优良的性质而被用于分析化学中,在分析化学中纳米银经过修饰后
与荧光蛋白结合并置于特定载体之上可以显著增强荧光蛋白的发光强度,可以在荧光蛋白很微量的情况下达到大剂量的发光效果,再进一步修饰蛋白质后比如将蛋白质与某些物质如嘌呤、腺苷等物质结合,可以做成具有特异性识别功能的荧光分子探针,再加上经过纳米银的增强作用可以用来检测很微量的物质,在一定程度上提高了分子探针的灵敏度,推动了分析化学的进步。
2.2 纳米铜
非纳米级下的铜已经具有良好的延展性,但是纳米级下的铜具有更良好的延展性——超塑延展性。纳米铜可以在室温下被拉伸50多倍而不出现裂痕,而最近的研究表明,在80纳米下,纳米铜结晶体的机械特性发生了巨大改变,在这个尺寸下纳米铜结晶体的机械强度是普通铜的三倍。
由于纳米铜的比表面积大,活性中心多,因此纳米铜一般是被作为催化剂而使用的,比如在石油工业和冶金工业中纳米铜是一种良好的催化剂。再比如在高分子聚合物的脱氢和氢化反应里,纳米铜具有极高的选择性和活性,因而是一种理想的催化剂。又比如在导电纤维的制造(以乙炔为原料聚合而成)中,因纳米铜具有比表面积大、活性中心多的特点仍然是一种
极好的催化剂。最后,在传统的汽车尾气处理中,一般使用铂和钌这样的贵金属使一氧化碳转变生成二氧化碳,虽然催化剂在反应前后物性不变,但是催化剂依然要参与到反应过程中,所以催化剂不可避免的会出现消耗,所以在该反应中使用贵金属作为催化剂显得成本过于昂贵,实验证明纳米铜对于一氧化碳转化为二氧化碳这一过程的某些部分的催化作用不亚于铂和钌的催化作用,而且纳米铜的价格明显低于铂和钌的价格,而且铜的含量较为丰富,所以纳米铜用来部分代替铂和钌来作为该反应的催化剂以降低成本。
2.3 纳米镍
一般来讲,纳米金属大部分被应用于制作高效的催化剂,纳米镍也不例外。由于纳米镍尺寸小,比表面积大,而且表面活性位也多,所以纳米镍一般被用加氢、氧化、合成、歧化、偶联等化学反应中。
3 纳米技术在其他方面的应用
经过纳米技术处理过的玻璃具有高度的不沾性,所以利用此种玻璃制作的化学仪器可以最大程度的避免因试剂残留而导致实验结果产生偏差。将布料表面进行纳米处理能够避免油污的
侵染,使得衣物有自净的功能。在医学上,通过仿生的纳米机器人可以完成很多高难度的手术,而且通过纳米机器人携带药物可以准确的将药物送达病灶,使病人尽快的康复。
4 结束语
由于在纳米尺寸下物质的性质会发生诸多改变,人们利用这些特点并加以改进使其造福于人民,这其中的典型代表即是纳米技术在化学中的应用。在化学中,纳米金属一般因为其较高的比表面积以及数量较多的活性中心而被当做高效的催化剂使用,或者将其作为某些贵金属催化剂的代替品以降低生产成本。
而且纳米技术是一门新兴的学科,虽然这门学科还比较年轻但是发展迅速,可喜的是我国的纳米技术行业走在了世界的前列,我国纳米技术的研究在世界上占举足轻重的地位。
参考文献
[1]柯毅民.纳米技术在化学工业中的应用[J].民营科技,2009,10:30.
[2]朱曾惠.化学工业中的纳米技术[J].化工新型材料,2004,01:41-43+49.
[3]廖明阳.纳米铜和微米铜的毒性比较研究[D].广西医科大学,2013.
[4]张平平.基于纳米结构的化学物质检测材料的研究[D].苏州大学,2015.