摘 要:为研究在社团划分基础上复杂网络的级联抗毁攻击策略,采用节点及其邻居节点介数定义初始负荷,这种定义方式综合考虑了节点的信息,采用局部择优分配策略处理故障节点负荷,研究了网络耦合强度,WS(WattsStrogatz)小世界网络、BA(BarabásiAlbert)无标度网络、ER(ErdsRényi)随机网络、局域世界(WL)网络在社团划分攻击策略下抗毁性,以及不同攻击策略下具有重叠和非重叠社团结构网络的抗毁性。仿真结果表明,网络的耦合强度与抗毁性成负相关;不同类型网络在快速分裂算法识别社团前提下,攻击介数最大节点时网络抗毁性最弱;具有重叠社团结构的网络在集团渗流算法(CPM)识别后,采用攻击重叠部分介数最大节点的策略时网络抗毁性最弱。结论表明采用社团划分的攻击策略可以最大规模破坏网络。
关键词:攻击策略;社团划分;复杂网络;级联抗毁性;网络模型
中图分类号: TP393;N945.1
文献标志码:A
6 结语
级联故障普遍存在现实网络中,研究网络的攻击策略对网络抗毁性的影响对于有效打击敌方网络,指导我方网络建设提高网络抗毁性具有重要意义。本文提出了一种基于社团划分的网络级联抗毁攻击策略,节点初始负荷根据节点及其邻居节点介数定义的“负荷容量”模型,故障负荷分配方式采用局部择优策略。仿真分析了网络的负荷分配指数对抗毁性的影响,结果表明当α=1时网络的抗毁性最强。研究分析了WS、BA、ER、WL四种网络模型在社团划分下的攻击策略,重点研究了具有重叠和非重叠社团结构网络的抗毁攻击策略,仿真结果表明基于社团划分的蓄意攻击策略在四种网络模型中均具有较好攻击效果。研究了社团结构参数对网络抗毁性的影响,结果表明网络的耦合强度与抗毁性成正相关。在非重叠社团网络中首先快速实现社团划分,然后分社团攻击介数最大的节点取得了最好的攻击策略;在重叠社团结构网络中,实现社团划分后蓄意攻击重叠部分介数最大的节点,然后分社团攻击介数最大节点为最有效网络攻击策略。本文的研究结论对于提高网络的攻击效果,或指导网络建设具有一定的参考意义。
参考文献:
[1]WEI D Q, LUO X S, ZHANG B. Analysis of cascading failure in complex power networks under the load local preferential redistribution rule[J]. Physica A: Statistical Mechanics and its Applications, 2012, 391(8): 2771-2777.
[2]WANG JW. Robustness of heterogenous network with mitigation strategy against cascading failures[J]. Modern Physics Letters B, 2012, 26(14): 1250087.
[3]THAI M T, PARDALOS P M. Handbook of optimization in complex networks[M]. Berlin: SpringerVerlag, 2012.
[4]WANG JW. Modeling cascading failures in complex networks based on radiate circle[J]. Physica A: Statistical Mechanics and its Applications, 2012, 391(15): 4004-4011.
[5]NEWMAN M E J, GIRVAN M. Finding and evaluating community structure in networks[J].Physical Review E,2004,69:026113.
[6]ALBERT R, BARABSI A L. Statistical mechanics of complex networks[J]. Reviews of Modern Physics, 2002, 74(1): 47-97.
[7]XIA Y, FAN J, DAVID H. Cascading failure in Watts_Strogatz smallworld networks[J]. Physica A: Statistical Mechanics and its Applications, 2010,389(6):1281-1285.
[8]LI F, HU B, DI P. Optimization of dynamic invulnerability of scalefree networks based on limited resource model[J]. Systems Engineering and Electronics, 2012, 34(1): 175-178.(黎放,胡斌,狄鹏.基于资源有限模型的无标度网络动态抗毁性优化[J].系统工程与电子技术,2012, 34(1):175-178.)
姚宏 [9] LI H, DU J, PENG X, et al. Research on cascading invulnerability of community structure networks under intentionalattack[J]. Journal of Computer Applications, 2014,34(4):935-938.(李浩敏,杜军,彭兴钊,等.蓄意攻击下一类多社团网络级联抗毁性研究[J].计算机应用,2014,34(4):935-938.)
[10]WU J, GAO Z, SUN H. Cascade and breakdown in scalefree networks with community structure[J]. Physical Review E,2006,74:06611.
[11]WANG J, RONG L, ZHANG Z. Attack vulnerability of scalefree networks due to cascading failures[J]. Physica A: Statistical Mechanics and its Applications, 2008, 387(26): 6671-6678.
[12]WU J, RUI L, JIAO L, et al. Phase transition model for community detection[J]. Physica A: Statistical Mechanics and its Applications,2013, 392(6):1287-1301.
[13]NEWMAN M E J. Fast algorithm for detecting community structure in networks[J]. Physical Review E,2004,70(6):066111.
[14]PALLA G, DERNYI I, FARKAS I, et al. Uncovering the overlapping community structure of complex networks in nature and society[J].Nature,2005,435(7043):814-818.
[15]ADAMCSEK B, PALLA G, FARKAS I J, et al. CFinder: locating cliques and overlapping modules in biological networks[J]. Bioinformatics,2006,22(8):1021-1023.
[16]MOTTER A E, NISHIKAWA T, LAI Y C. Cascadebased attacks on complex networks [J]. Physical Review E, 2002, 66: 065102(R).
发布评论