2014重庆高考数学分析难度与去年持平
指数函数求导第一篇:2014重庆高考数学分析 难度与去年持平
2014重庆高考数学分析 难度与去年持平
2014年的重庆市数学高考是高中新课改后的第二次高考,试卷延续了近几年高考数学命题的风格,内容丰富,难易梯度明显,试卷整体难度适中,重在考查学生知识点的掌握、数学思维能力和数学知识的应用能力的培养,并体现了数学美感。
2014年数学试题总体上体现了“稳定和创新”,与2013年试题持平,试题无偏题怪,主干知识覆盖面较广。试题在题型设置、试卷结构、难度控制等方面都保持了稳定。试题难易梯度明显,由易到难便于学生稳定考试情绪、正常发挥水平;理科解答题的考试内容仍然是三角、概率、立体几何、导数、解析几何、数列与综合;文科解答题的考试内容是数列、概率、三角、导数、立体几何、解析几何;试题难易度把握很好,体现过度平稳性,和与教材联系紧密性。
9题、10题、21、22题体现了很好的区分度,且21、22第一问入手容易,对后续问题的解决需要学生有较高的综合运用数学知识解决问题的能力,注重数学知识的融会贯通及数学能力的考
查,很好的体现了能力立意,文科试题中应用性试题比例加重,试题背景贴合学生生活实际,理科试题很好地考查了学生后续的学习能力的考査,很好地体现了试题的选拔功能。试题充分体现了新课标精神,有利于重庆新课程改革的顺利开展。
总之,今年的数学试题平稳中有创新,科学性中有美感,理论性中有应用。既有利于中学数学的教学,又有利于高校的选拔,是一份很好的高考试卷。
第二篇:2018高考数学分析
2018高考理科数学评析:概率大题有新意
广东加入全国卷已三年,今年的考卷贯彻了稳中求变的思想,多层次、多角度、多视点地考查了学生的数学核心素养和学科潜能,这样的试卷对考生来说无疑是“福音”。从考点与命题特点来看,以能力立意,突出考查数学核心素养。总的来说,回归课本,夯实基础才是王道!
一、试卷各板块占比——覆盖比重有调整
分析各模块占比:整套试卷在六大板块的考查比重上有所调整,三角函数弱化,概率和解析几何的顺序调换,概率需要用到导数,强调应用性。
二、试卷各部分分析——选填重基础,大题较常规
①选填题:
选择填空部分的考点设置基本与前两年新课标全国卷一致,部分考题有新意,计算量下降,第3题考查概率时加入现实背景,题目不难,但粗心的同学易选错。第7题立体几何,以三视图为背景,结合最短路径考查。第10题几何概型,加入数学历史背景,可用勾股定理联系三个半圆之间的面积关系,也可用特殊值法来解答。第12题立体几何,考查截面面积最大的问题,过程较难想到,但计算量小。填空题前三题较常规,第16题以三角函数为载体,考查函数最值问题,学生容易在三角函数上纠结,实际上应该用导数解答。
②解答题:
本次大题考查题型较为常规,但是题目顺序略有调整,其中,概率与解析几何位置互换。另外,题目难度相较于往年整体下降。比如,第17题三角函数,两问都只考查了余弦定理,计算量不大。第18题立体几何,主要考查了垂直证明以及线面角的求解,几何法会比建系更为简单,计算量不大,难度一般。第19题改为了圆锥曲线,其中第二问的角度相等需要转化为斜率互为相反数,即证明
即可,计算量和难度相较于往年的圆锥曲线问题都大大下降,较易得分。第20题则变成了概率统计问题,首先是位置的对调,体现了未来数学的改革方向——强调应用性+概率统计难度加大。另外,题目的考查方式较为新颖,第一问需要与求导相结合,而第二问需要先利用二项分布求出不合格品的期望,再得到总费用的期望,这一步的思路转化比较困难。最后一道压轴题难度相较于往年难度下降,第一问直接求导或者分参后求导,变为二次函数分类讨论即可;第二问属于与韦达定理相关的双变量问题,最后通过设立新的主元构造函数求函数最值即可。
整体来说,在广东确定使用新课标卷的第三年,在题目设置上略有调整,依然需要考生注重基础,回归教材,重视数学本质。但在概率部分增强了应用性,有较强数学核心素养的学生更有优势。
2018高考全国卷Ⅰ文科数学评析:基础题比例加大
纵观高考新课标全国卷Ⅰ文科数学试题,加大了基础题目的比例以及基础题型的考查。考点大部分覆盖近几年的试题,但在知识比重和能力要求上略有变化。其中概率小题和程序框图题目在2018年试卷中消失,增加了对空间几何体的考查,对学生空间想象能力要求有所提高,
比如考查了圆柱的截面、圆柱的表面最短路径、线面夹角,以及空间折叠。同时试卷重视数学知识与实际问题的结合,比如第3题和第19题,以生产生活为背景,从实际中抽象出数学问题,将数学知识与实际问题相结合,考查考生的阅读理解能力以及应用数学知识解决实际问题的能力,体现了数学的应用价值。
一、试卷各板块占比
2018年高考全国1卷文科数学试题遵循《普通高中数学课程标准》、《2018年普通高等学校招生全国统一考试大纲》和《2018年普通高等学校招生全国统一考试大纲的说明》的要求,试卷结构略有调整,删去了程序框图,并减少了对概率统计的考查,增加了三角函数与立体几何,考查学生的数学运算与直观想象核心素养,在题目设置上注重对数学基础知识、数学思想方法和数学能力的考查,加强与实际生活的结合。
二、试卷各部分分析
①选填题:
选择填空部分的考点设置与新课标近几年基本保持一致,顺序略有调整,尤其注重基础,考
查通性通法的应用,同时注重与实际生活的接轨。第3题图表题考查学生对文字的阅读理解能力与细心程度;第12题分段函数问题,需要分类讨论或者数形结合的思想去处理,考查学生的综合能力;第16题属于解三角形问题,需要边角互化后借助余弦定理来解决问题。
②解答题:
第17题与近三年一致考查数列,求数列通项需要构造一个新的等比数列,但前一问证明给了提示,相对而言难度不大。第18题立体几何第1问属于常规证明题,主要考查对面面垂直判定定理的应用,但是证明过程不规范容易失分,第2问属于求棱锥体积的常规题型,但求解过程涉及折叠问题中不变量与变量的动态分析,同时底面面积计算过程稍微复杂,有一定难度,属于中档题。第19题考查频率分布直方图,比较常规,但是需要注意不要犯计算错误。第20题以抛物线作为圆锥曲线大题考查,第1问考查点为直线方程及抛物线方程代入,运用数形结合思维,较容易得出答案。第2问,参考2015年全国卷I的圆锥大题,将角度的证明转化为斜率的关系,考生若掌握直线与圆锥曲线的联立、韦达定理运用,以及一定的计算能力,不难证明。第21题导数题是含有指数和对数的函数,在导数压轴题中较为经典。第1问考查极值的定义,从而求出参数,然后求函数的单调性。在解答时,首先要注意指数函数的
定点,从而取到导数为零的点,然后用二次求导即可解决(考查学生对常见函数的熟悉程度)。第2问考查恒成立的问题,并给出了参数的范围,其实相当于把导数最值代入进行计算,从而得到对应的不等式。考虑到函数中既有指数,又有对数,所以考查学生对经典不等式的了解,实际上也可看成是两个函数求交点的问题。