【教学目标】
知识技能:结合实践活动,认识体积、容积单位之间的进率,会进行体积、容积单位之间的换算。
数学思考:渗透类比思想,在观察、操作的过程中,进一步发展空间观念。
问题解决:会应用对比的方法,记忆并区分长度单位、面积单位和体积单位,掌握相邻两个单位间的进率。
情感态度:学生想探究问题,愿意和同伴进行合作交流;乐于用学过的知识解决生活中相关的实际问题。
【教学重点】观察、操作中会进行体积、容积单位之间的换算。
【教学难点】推导体积单位间的进率和建立相应的空间观念。
【教学过程】
dm是什么单位的一、 复习导入
1、复习体积和容积的概念。
(1)说说常见的长度单位的名称,以及相邻两个单位的进率。
(2)说说面积单位的名称,以及相邻两个单位之间的进率。
2、1平方分米=100平方厘米想想是怎么推导出来的?
3、揭示课题:这课我们学习相邻体积单位间的进率。
二、自主探索 ,验证猜测
1、我们认识的体积单位有哪些?
板书:立方米 立方分米 立方厘米
提问:1立方分米=?立方厘米,你认为可能是多少?(可能有认为是100,也有可能认为是1000。)
2、究竟哪种猜想是正确的呢?我们一起来验证一下。
棱长为1dm的正方体盒子中,可以放多少个体积为1cm3的小正方体呢?把你的想法在小组内交流一下,然后摆一摆,算一算。
(小组讨论、拼摆,推导相邻体积单位之间的进率,教师巡视,加以指导)
3、全班交流:谁再来说说,1立方分米=?立方厘米(估计三种说法)
①棱长1分米的正方体体积是1立方分米;棱长10厘米的正方体体积是1000立方厘米,而棱长1分米的正方体和棱长10厘米的正方体体积相等,所以1立方分米=1000立方厘米。
②在棱长1分米的正方体中摆棱长1厘米的正方体,一排能摆10个,能摆10排,摆10层,一共能摆10×10×10=1000个,所以1立方分米=1000立方厘米。
(电脑展示这种思考,然后请每个学生都把推导过程相互说一说。)
③1立方分米=1升,1立方厘米=1毫升,而1升=1000毫升,所以1立方分米=1000立方厘米。
④口头回答:3立方分米=?立方厘米,5000立方厘米=?立方分米
4、提问:用同样的方法,你能推算出1立方米等于多少立方分米吗?
①学生独立思考,并组织语言准备交流,然后请1-2名学生说说推导过程。
a.计算小正方体的个数;b.计算体积;c.1dm3=1000cm3,得到相邻的单位分米3和米3之间的进率是1000,即1m3=1000dm3.
(板书:1立方米=1000立方分米)
②口头回答:
2立方米=?立方分米。
9000立方分米=?立方米
5、补全表格,继续填写:
单位名称 相邻两个单位间的进率
长度
面积
体积
①总结体积单位以及它们之间的进率
②说说它们分别是计量物体的什么的?
③怎么来记忆它们相邻单位之间的进率?
三、巩固深化
1、出示书第45页的“练一练”第3题。
学生先独立完成。
交流你是怎样想的。
小结:把高级单位化成低级单位,要用高级单位的数乘进率(小数点向右移动三位);把低级单位化成高级单位,要用低级单位的数除以进率(把小数点向左移动三位)。
2、辨别
有一个小朋友计算出一只微波炉的体积是63立方分米,他想用立方厘米做单位,他是这样换算的:
63立方分米=0.063立方厘米
他换算得对吗?
(引导学生认识:①单位换算的方法;②联系实际分析换算的合理性,促进数感的发展。)
3、下面每一组数中都有一个数与其他数不同,请出它!
1.02m³ 1020dm³ 10200L 1020000cm³
5046dm³ 5.046m³ 5046000cm³ 5046ml
4、课本P45 第2题。
鼓励学生通过观察得出长方体的长、宽、高,再应用公式进行计算。
5、棱长为2m的正方体盒子中,可以放多少个棱长为2dm的小正方体?
让学生先想象一排可以摆几个,一层可以摆几排,共可以摆几层。
6、课本P45 第4题。
7、课本P45 第5题。
四、课堂总结。
通过这节课的学习,你有什么收获?
【板书设计】
体积单位的换算
1分米3 = 1000厘米3
1升 = 1000毫升
1米3 = 1000 分米3
1m3 = 1000 dm3
发布评论